

2020

PERLAST®

Benchmark Report

Key Perlast® Materials

Benchmark testing was carried out by an external third-party test house to compare the performance characteristics of five perfluoroelastomer grades.

Typical material properties taken from published datasheets

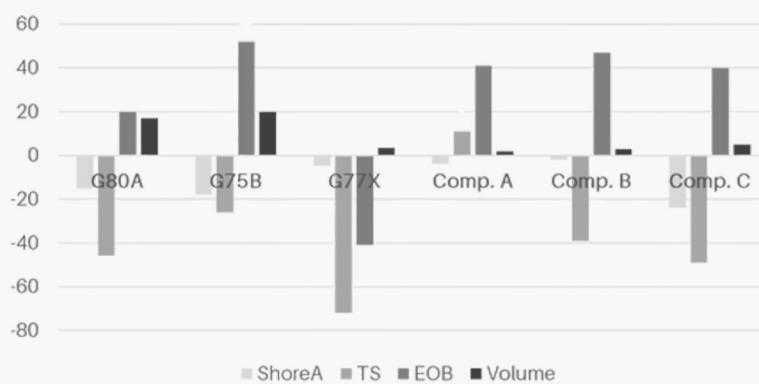
Properties	Unit	Perlast®	Perlast®	Perlast®	Comp. Grade	Comp. Grade	Comp. Grade
		G77X	G80A	G75B	A	B	C
Max. Temp.	°C	350	310	325	327	316	275
100% Modulus	MPa	9.1	15.0	16.0	11.2	7.2	9.1
Tensile Strength	MPa	18.0	19.0	18.0	17.9	16.9	15.2
Elongation at break	%	170	150	125	160	150	160
Hardness	ShoreA	77	81	85	75	75	75
Compression Set 72h @ 200°C	%	8	18	18	13	14	25

Chemical Resistance Summary

Properties	Perlast® G77X	Perlast® G80A	Perlast® G75B	Comp. Grade A	Comp. Grade B	Comp. Grade C
Acids (Nitric, sulphuric, hydrochloric)	1	1	1	1	1	1
Alkalis (NaOH, KOH, Mg(OH)2)	2	1	1	2	2	1
Amines (ethylenediamine, ethanolamine)	3	1	3	3	3	1
Water / Steam (250 °C)	3	1	1	3	3	1
Ketones (acetone, MEK, MIBK)	1	1	1	1	1	1
Esters (ethylacetate)	1	1	1	1	1	1
Ethers (dimethylether, diethylether)	1	1	1	1	1	1
Aldehydes (acetaldehyde)	1	1	1	1	1	1
Alcohols (methanol, ethanol)	1	1	1	1	1	1
Hydrocarbons (benzene, toluene, xylene)	1	1	1	1	1	1
Sour gas (H2S)	1	1	1	1	1	1
Lubricating Oil (di-ester and petroleum based)	1	1	1	1	1	1
Fluorinated Fluids (HCFC, fluorocarbon oils)	3	3	3	3	3	3

1 = Excellent, little or no effect.

2 = Good, moderate (10-19%) swelling and change in physical properties.


3 = Do not use, significant (>20%) swelling and noticeable change in physical properties

Immersion Testing in Acid

When immersed in 70% nitric acid for 168 hours at 80°C Perlast® G77X and competitor grade A and B exhibited the smallest changes in hardness (Shore A) & volume swell.

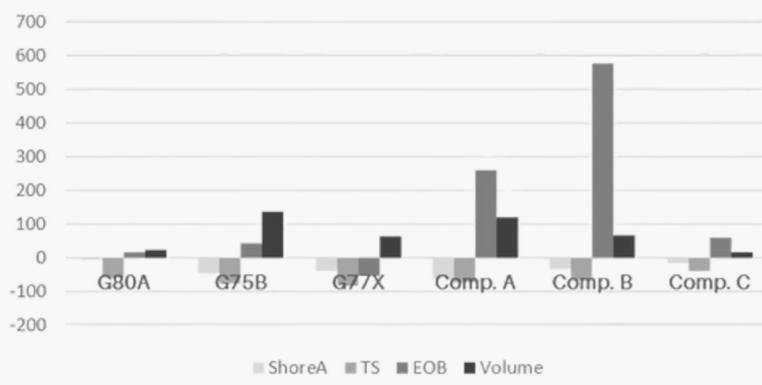
Perlast® G80A exhibited the smallest changes in elongation (EOB).

Immersion in 70% nitric acid (168h at 80°C) % change

ShoreA = hardness TS = tensile strength
EOB = elongation at break Volume = swell

Images of the O-ring surfaces after ageing 20 x magnification

The test samples were BS 214 O-rings with each material grade tested side by side.


Summary:
Perlast® G80A is a suitable alternative to competitor grades in acids.

Immersion Testing in Amines

When immersed in pure ethylenediamine for 168 hours at 100°C Perlast® G80A outperforms Perlast® G75B and G77X, plus all three competitor grades.

Competitor A and B show the worst properties.

Immersion in ethylenediamine (168h at 100°C) % change

ShoreA = hardness TS = tensile strength
EOB = elongation at break Volume = swell

Images of the O-ring surfaces after ageing 20 x magnification

The test samples were BS 214 O-rings with each material grade tested side by side.

Summary:
Perlast® G80A is a suitable alternative to competitor grade C and superior to competitor grade A and B in amines.

Immersion Testing in Steam

When immersed in steam for 168 hours at 250°C competitor grades A and B were destroyed.

Perlast® G80A, G75B and G77X outperformed all three competitor grades.

Immersion in steam (168h at 250°C) % change

Images of the O-ring surfaces after ageing 20 x magnification

The test samples were BS 214 O-rings with each material grade tested side by side.

Summary:
Perlast® G80A is a suitable alternative to competitor grade C and Perlast® G75B and G80A are superior to competitor grades A and B in steam applications.

For more information on the
Perlast® material range, contact:

Stuart Campton

Strategic Market Development
Leader - Fluorinated Products
SCampton@idexcorp.com

[Enquire Now](#)

Perlast® perfluoroelastomers are exclusively manufactured by Precision Polymer Engineering.
Perlast® is a registered trademark of Precision Polymer Engineering.

PERLAST®

Precision Polymer Engineering | Greenbank Rd, Blackburn, BB1 3EA, England | 3201 S. Blue Bell Road, Brenham, TX 77833, USA.

© 2026 Precision Polymer Engineering/IDEX

Perlast® Competitor Benchmark Report - Doc: 2153C-2026